jueves, 18 de agosto de 2011

CINEMÁTICA

Cinemática

De Wikipedia, la enciclopedia libre

La cinemática es la parte de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen, limitándose esencialmente, al estudio de la trayectoria en función del tiempo. Cinemática deriva de la palabra griega κινεω (kineo) que significa mover.
En la cinemática se utiliza un sistema de coordenadas para describir las trayectorias y se le llama sistema de referencia. La velocidad es el ritmo con que cambia la posición. La aceleración es el ritmo con que cambia la velocidad. La velocidad y la aceleración son las dos principales cantidades que describen cómo cambia la posición en función del tiempo.

Contenido


Historia

Galileo Galilei hizo sus famosos estudios del movimiento de caída libre y de partículas en planos inclinados a fin de comprender temas del movimiento relevantes en su tiempo, como el movimiento de los planetas y de las balas de cañón hacia el 1604.[1]
El nacimiento de la cinemática moderna se da con la alocución de Pierre Varignon el 20 de enero de 1700 ante la academia real de las ciencias de París.[2] En esta ocasión define la noción de aceleración y muestra cómo es posible deducirla de la velocidad instantánea con la ayuda de un simple procedimiento de cálculo diferencial. En la segunda mitad del siglo XVIII se produjeron más contribuciones por Jean Le Rond d'Alembert y André-Marie Ampère. Con la Teoría de la relatividad especial de Albert Einstein en 1905 se inició una nueva etapa, la cinemática relativista, donde el tiempo y el espacio no son absolutos, y sí lo es la velocidad de la luz.

Cinemática clásica-Fundamentos

La cinemática trata del estudio del movimiento de los cuerpos en general, y en particular, el caso simplificado del movimiento de un punto material. Para sistemas de muchas partículas, tales como los fluidos, las leyes de movimiento se estudian en la mecánica de fluidos
El movimiento trazado por una partícula lo mide un observador respecto a un sistema de referencia. Desde el punto de vista matemático, la cinemática expresa cómo varían las coordenadas de posición de la partícula (o partículas) en función del tiempo. La función que describe la trayectoria recorrida por el cuerpo (o partícula) depende de la velocidad (la rapidez con la que cambia de posición un móvil) y de la aceleración (variación de la velocidad respecto del tiempo).
El movimiento de una partícula (o cuerpo rígido) se puede describir según los valores de velocidad y aceleración, que son magnitudes vectoriales.
  • Si la aceleración es nula, da lugar a un movimiento rectilíneo uniforme y la velocidad permanece constante a lo largo del tiempo.
  • Si la aceleración es constante con igual dirección que la velocidad, da lugar al movimiento rectilíneo uniformemente acelerado y la velocidad variará a lo largo del tiempo.
  • Si la aceleración es constante con dirección perpendicular a la velocidad, da lugar al movimiento circular uniforme, donde el módulo de la velocidad es constante, cambiando su dirección con el tiempo.
  • Cuando la aceleración es constante y está en el mismo plano que la velocidad y la trayectoria, tenemos el caso del movimiento parabólico, donde la componente de la velocidad en la dirección de la aceleración se comporta como un movimiento rectilíneo uniformemente acelerado, y la componente perpendicular se comporta como un movimiento rectilíneo uniforme, generándose una trayectoria parabólica al componer ambas.
  • Cuando la aceleración es constante pero no está en el mismo plano que la velocidad y la trayectoria, se observa el efecto de Coriolis.
  • En el movimiento armónico simple se tiene un movimiento periódico de vaivén, como el del péndulo, en el cual un cuerpo oscila a un lado y a otro desde la posición de equilibrio en una dirección determinada y en intervalos iguales de tiempo. La aceleración y la velocidad son funciones, en este caso, sinusoidales del tiempo.
Al considerar el movimiento de traslación de un cuerpo extenso, en el caso de ser rígido, conociendo como se mueve una de las partículas, se deduce como se mueven las demás. Así basta describir el movimiento de una partícula puntual tal como el centro de masa del cuerpo para especificar el movimiento de todo el cuerpo. En la descripción del movimiento de rotación hay que considerar el eje de giro respecto del cual rota el cuerpo y la distribución de partículas respecto al eje de giro. El estudio del movimiento de giro de un sólido rígido suele incluirse en la temática de la mecánica del sólido rígido por ser más complicado. Un movimiento interesante es el de una peonza, que al girar puede tener un movimiento de precesión y de nutación
Cuando un cuerpo posee varios movimientos simultáneamente, tal como uno de traslación y otro de rotación, se puede estudiar cada uno por separado en el sistema de referencia que sea apropiado para cada uno, y luego, superponer los movimientos.

Sistemas de coordenadas

En el estudio del movimiento, los sistemas de coordenadas más útiles se encuentran viendo los límites de la trayectoria a recorrer, o analizando el efecto geométrico de la aceleración que afecta al movimiento. Así, para describir el movimiento de un talón obligado a desplazarse a lo largo de un aro circular, la coordenada más útil sería el ángulo trazado sobre el aro. Del mismo modo, para describir el movimiento de una partícula sometida a la acción de una fuerza central, las coordenadas polares serían las más útiles.
En la gran mayoría de los casos, el estudio cinemático se hace sobre un sistema de coordenadas cartesianas, usando una, dos o tres dimensiones según la trayectoria seguida por el cuerpo.

Registro del movimiento

La tecnología hoy en día nos ofrece muchas formas de registrar el movimiento efectuado por un cuerpo. Así, para medir la velocidad se dispone del radar de tráfico cuyo funcionamiento se basa en el efecto Doppler. El taquímetro es un indicador de la velocidad de un vehículo basado en la frecuencia de rotación de las ruedas. Los caminantes disponen de podómetros que detectan las vibraciones características del paso y, suponiendo una distancia media característica para cada paso, permiten calcular la distancia recorrida. El vídeo, unido al análisis informático de las imágenes, permite igualmente determinar la posición y la velocidad de los vehículos.

Movimientos de traslación

Movimiento rectilíneo uniforme

Para este caso la aceleración es cero por lo que la velocidad permanece constante a lo largo del tiempo. Esto corresponde al movimiento de un objeto lanzado en el espacio fuera de toda interacción, o al movimiento de un objeto que se desliza sin fricción. Siendo la velocidad v constante, la posición variará linealmente respecto del tiempo, según la ecuación:
donde es la posición inicial del móvil respecto al centro de coordenadas, es decir para .
Si la ecuación anterior corresponde a una recta que pasa por el origen, en el sistema de coordenadas .
Al estudiar las velocidades de un cuerpo rígido, este tipo de movimiento tiene una propiedad fundamental: Todos los puntos de un sólido en translación rectilínea uniforme tienen el mismo vector velocidad.

Movimiento rectilíneo uniformemente acelerado

En éste la aceleración es constante, por lo que la velocidad de móvil varía de forma lineal y la posición de manera parabólica respecto del tiempo. Las ecuaciones que rigen este movimiento son las siguientes:
D= v x t+ 1/2*a*t2
donde D=desplazamiento
v=velocidad (tiene dirección)
t=tiempo transcurrido
a=acelaración

Observar que si la aceleración se anulara, las ecuaciones anteriores describirían, lógicamente, un "Movimiento Rectilíneo Uniforme" (con velocidad constante).
Dos casos específicos de MRUA son la caída libre y el tiro vertical. La caída libre es el movimiento de un objeto que cae en dirección al centro de la Tierra con una aceleración equivalente a la aceleración de la gravedad (que en el caso del planeta Tierra al nivel del mar es de aproximadamente 9,8 m/s2). El tiro vertical, en cambio, corresponde al de un objeto arrojado en la dirección opuesta al centro de la tierra, ganando altura. En este caso la aceleración de la gravedad, provoca que el objeto vaya perdiendo velocidad, en lugar de ganarla, hasta llegar al estado de reposo; seguidamente, y a partir de allí, comienza un movimiento de caída libre con velocidad inicial nula.

Movimiento parabólico

El movimiento parabólico se puede analizar como la composición de dos movimientos rectilíneos distintos: uno horizontal (según el eje x) de velocidad constante, y otro vertical (según eje y) uniformemente acelerado, con la aceleración gravitatoria. La conjugación de ambos da como resultado una trayectoria parabólica.


En tanto que el movimiento según el eje será rectilíneo uniformmente acelerado (tiro vertical), siendo sus ecuaciones rigentes:
La altura máxima en la trayectoria parabólica se producirá cuando la componente vertical de la velocidad sea cero (máximo de la parábola); y el mayor alcance horizontal ocurrirá cuando el cuerpo retorne al suelo, en (donde la parábola corta al eje )



Movimientos circulares
Los movimientos circulares son un tipo común de movimientos, tal como experimentan las partículas de un disco, o una noria, o una piedra de molino al girar alrededor de su eje. En el caso del disco que gira, sus partículas describen trayectorias circulares, realizando un número de vueltas en un cierto espacio de tiempo. En vez de distancia, es más cómodo hablar de ángulos recorridos, pues ellos son los mismos independientemente de la posición de la partícula respecto del centro de giro en el disco. La distancia recorrida por una partícula del disco depende de su posición y es igual al producto del ángulo recorrido por la distancia al eje de giro. La velocidad angular es la variación en el tiempo del desplazamiento angular de la partícula, y la aceleración angular es la variación en el tiempo de la velocidad angular.
La velocidad lineal de un punto es la razón entre el espacio recorrido y el tiempo, que depende de la posición de la partícula en el disco, siendo igual a la velocidad angular multiplicada por la distancia al eje de giro. La velocidad lineal instantánea está en la dirección tangente a la trayectoria circular.
La aceleración instantánea es la variación en el tiempo de la velocidad lineal instantánea (v). En general se tienen dos componentes de aceleración, la aceleración tangencial a la trayectoria y la normal a ésta. La aceleración tangencial es la que causa la variación del módulo de la velocidad lineal respecto del tiempo, mientras que la aceleración normal es la responsable del cambio de dirección de la velocidad. Su valor depende de la variación en la distancia al eje de giro. Las dos componentes juntas son las que provocan una aceleración total capaz de hacer que un objeto rote en torno a un centro.

Movimiento circular uniforme

Se caracteriza por tener una velocidad angular constante por lo que la aceleración angular es nula. La velocidad lineal de la partícula no varía en módulo, pero sí en dirección. La aceleración tangencial es nula; pero existe aceleración centrípeta (la aceleración normal), que es causante del cambio de dirección.
Movimiento circular uniformemente acelerado

En este movimiento, la velocidad angular varía linealmente respecto del tiempo, por estar sometido el móvil a una aceleración angular constante. Las ecuaciones de movimiento son análogas a las del rectilíneo uniformemente acelerado, pero usando ángulos en vez de distancias.

jueves, 21 de julio de 2011

Vectores

Vector (física)

De Wikipedia, la enciclopedia libre

Un vector físico es una magnitud física caracterizable mediante un punto de aplicación u origen, una magnitud o módulo, una dirección y un sentido; o alternativamente por un número de componentes independientes tales que los componentes medidas por diferentes observadores sean relacionables de manera sistemática.

Sistema Internacional de Medidas

Sistema Internacional de Unidades

De Wikipedia, la enciclopedia libre


El Sistema Internacional de Unidades (abreviado SI del francés: Le Système International d'Unités), también denominado Sistema Internacional de Medidas, es el nombre que recibe el sistema de unidades que se usa en la mayoría de los países y es la forma actual del sistema métrico decimal. El SI también es conocido como «sistema métrico», especialmente en las naciones en las que aún no se ha implantado para su uso cotidiano. Fue creado en 1960 por la Conferencia General de Pesos y Medidas, que inicialmente definió seis unidades físicas básicas. En 1971 se añadió la séptima unidad básica, el mol.

Sistemas de medición

Sistema de unidades

De Wikipedia, la enciclopedia libre

Un sistema de unidades es un conjunto consistente de unidades de medida. Definen un conjunto básico de unidades de medida a partir del cual se derivan el resto. Existen varios sistemas de unidades:

Foto del Kilogramo Patrón

Se conserva en la Oficina de Pesos y Medidas en Sevres, Francia